Tipos de cerchas según su función del equilibrio y conformación
La estructura o la armadura de cubierta que hace de base
para la edificación de arcos, de bóvedas o de otras estructuras, es conocida
como cercha o cimbra. Es una estructura reticular con barras rectas e
interconectadas en nudos, las cuales forman triángulos planos o forman
pirámides tridimensionales. Este armazón permite la transferencia de peso de
forma segura, lo que la hace útil como base de una amplia variedad de
estructuras, razón por la que es un elemento clave y esencial en construcción.
Los tipos de cerchas se clasifican según su función del equilibrio y su
conformación.
Tipos de cerchas según su función del equilibrio
Cerchas isostáticas. Tipo de estructura que se puede
analizar mediante principios y fórmulas que revelen los valores estáticos. De
naturaleza determinada estáticamente, que si se llegara a eliminar algunos de
los componentes que unen al armazón, fallaría catastróficamente todo el
sistema.
Cerchas hiperestáticas. Su configuración se caracteriza por
su estado de equilibrio, el momento flector es de valor igual a 0 en cada barra
del sistema. A pesar de esto, la cercha puede que presente condiciones de
inestabilidad, ya que su diseño de nudos fijos se asemeja a una estructura
isostática.
Tipos de cerchas
según su conformación
Cercha simple. De conformación definida estáticamente, donde
la cantidad de varillas y de uniones articuladas tienen que ser de acuerdo a
una fórmula apropiada. Su forma es de triángulo y su cálculo es basado en la
estática gráfica y en el equilibrio de sus nudos.
Cercha compuesta. Estructura con determinación estática, la
cual se puede diseñar a partir de una o dos cerchas simples. También pueden
tener 3 varas adicionales o a su vez un armazón interno, con tal que siga los
criterios de equilibrio.
Cercha compleja. Se cuenta dentro de la categoría de
hiperestáticas, y se caracteriza por no excluir a los modelos anteriores y por
incluir al resto de geometrías. Se compone por uniones fijas y su cálculo se
realiza o por el método de Heneberg o por el método matricial de la rigidez.
Comentarios
Publicar un comentario